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on PTEs and Stein-type estimators for various linear models. 
In statistical inference, the use of prior information on other 
parameters in a statistical model, usually leads to improved 
inference on the parameter of interest. Prior information may he 
(i) known and deterministic which is then incorporated into the 
model in the form of constraints on the parameter space, leading 
to a restricted model, or (ii) uncertain and specified in the form of 
a prior distribution or a verified null hypothesis. In (ii), choosing 
certain restricted estimators may be justified when the prior 
information can be quantified i.e. comes with known confidence 
levels.

In some statistical models, certain parameters are of primary 
interest while other parameters may be considered as nuisance 
parameters. One procedure to mitigate the presence of nuisance 
parameters is to assess what value(s) such nuisance parameter(s) 
take, by a preliminary test with a null hypothesis restricting the 
nuisance parameter values. The null hypothesized value(s) of the 
nuisance parameter are either used or not, depending on whether 
the observed preliminary test statistic falls in the acceptance or 
rejection region of the hypothesis. That is, our final estimator for 
the parameter of interest is thus a linear combination, conditional 
on whether the preliminary test statistic is in the acceptance 
or rejection region of the test, and is called a Preliminary Test 
Estimator (PTE). 

[2,3], and [4] were among the first to implement the idea of 
preliminary test estimation (PTE) in an analysis of variance 
(ANOVA) framework to analyze the effect of the preliminary test 
on the estimation of variance. The idea goes back to a suggestion 
in [5], which considers testing differences between two means 
after testing for the equality of variances; then using the usual 
t-test with the pooled estimate for variance, if the variance test 
shows equality; otherwise, it falls into the category of Behrens-
Fisher problem. In these problems it became clear that the 
performance of the PTE depended heavily on the significance 
level of the preliminary test. Han c [6] were the first to attempt to 
find an optimum size of significance level for the preliminary test 
for this two-sample problem.

All Stein-type estimators [7,8] involve appropriate test 
statistics for testing the adequacy of uncertain prior information 
on the parameter space, which is incorporated into the actual 
formulation of the estimator. Stein-type estimators adjust the 
unrestricted estimator by an amount of the difference between 
unrestricted and restricted estimators scaled by the adjusted test 
statistics for the uncertain prior information. Usually, the test 
statistics are the normalized distance between the unrestricted 
and restricted estimators and follow a noncentral chi-square or 
an F-distribution. The risk or the MSE of Stein-type estimators 
depends on the non-centrality parameter, which represents the 
distance between the full model and restricted model. The PTE 
may be considered a precursor of the Stein-type estimator. A 
simple replacement of the indicator function that we will see in 
the PTE with a multiple of the test statistic, leads to a Stein-type 
estimator.

Other Estimators
The CND is the most widely used circular distribution in 

circular statistics. It plays as central role as the Normal distribution 
does in usual ‘linear’ statistics. The probability density for a CND 
denoted by CND( ,µ κ ), is:

		
( ) ( )( )
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1
exp cos , 0 2
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(1)

The mean direction is also referred to as the preferred direction 
and the concentration parameter can be thought of as the inverse 
of variance as it is a measure of concentration around the mean 
direction. A larger value for implies that observations are more 
concentrated around the mean direction, while a value of close 
to 0 implies there may not be a strongly preferred direction. We 
consider now the maximum likelihood estimates (MLEs) for the 
parameter in a classical and Bayesian setting.

Maximum Likelihood Estimate for Concentration 
Parameter

Given a random sample 
1
, ...,

n
α α  from a CND( ,µ κ ), the MLE 
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Introduction
Saleh AME [1], provides an introduction and thorough review 
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for κ when µ in unknown is given by Jammalamadaka SR [9]:

						            
(2)

When the mean direction µ is known, then the MLE for κ
is obtained by substituting µ in place of 

0
α in 2. Since the 

estimation of concentration parameter is of main interest here, 
we will denote       and      the MLEs for κ when sample mean 
direction is used (if µ unknown), and when the mean direction 
µ is known, respectively. In both cases the MLEs carry the usual 

asymptotic properties. Analogous to the case of a linear Normal 
distribution, ˆµκ  is superior (has smaller MSE) than ˆMLEκ , [9].

If the sample comes from a population with population mean µ 

then the ( ) ( )ˆ ˆMSE MSE MLEµκ κ<  [9]:
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	This raises the question whether we can go somewhere in 
between if we have partial information on µ.

MLE for κ when there is a prior on µ

In this semi-Bayesian setting we will place a prior on the 
nuisance mean direction µ , a convenient choice being a CN:

          					          
(4)	

where 
o

µ and τ are the mean direction and concentration 
parameters for the prior. The value for τ measures confidence in 
the prior mean direction

o
µ . A larger value of τ makes the prior 

distribution have higher concentration around µ0. A value of 
0τ = implies a uniform prior on [0, 2 )π for µ.

In this context, the parameter µ has a prior distribution, while 
the parameter κ is an unknown parameter as in the classical 
setting. The parameter κ is of interest, while µ is the nuisance 
parameter. We thus blend together classical and Bayesian methods 
to get an estimate for κ.

We begin with the usual likelihood given the data (
1
, ...,

n
α α ) 

independent and identically distributed:

						                    
(5)

Given the prior distribution on µ , we wish to estimate the 
concentration parameterκ . We derive the likelihood function for 
κ by first averaging out our prior knowledge on µ . The result is 
the likelihood for κ given by:

   
						       (6)

In 6, we begin with joint likelihood for the µ and κ which 
is just the joint density of the data. We then derive marginal 
distribution for the observations by integrating with respect to 
µ. After incorporating our prior knowledge on µ and integrating 
with respect to  µ , we obtain  a  valid   likelihood		   
for κ which we want to maximize with respect toκ .

						                   

  (7)
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Putting *

0
cos( ) cos( ) cos( )Rκ α τ µ γ α+ =

 
and

*

0
sin( ) sin( ) sin( )Rκ α τ µ γ α+ = , and by the definition of the 

Bessel function
	            

, the resulting integral in 8 is our likelihood 

for κ which is given by:

						            
.

The likelihood is a ratio of Bessel functions. Given the 
likelihood, prior distribution on µ , and data we can find the MLE 
forκ . There is not a simple analytical solution for the MLE, so 
numerical methods are required for the maximization of 9 with 
respect to κ leading to the semi-Bayesian MLE

Bay
κ̂ .

One interesting comparison would be of the frequentist 
MLE for κ as in 2 with the semi-Bayesian MLE obtained from 
9, using a circular uniform prior distribution on µ in the latter, 
i.e. setting 0τ = . In some cases, placing uniform priors result 
in Bayes estimates that are similar to classical MLEs. Using a 
circular uniform prior distribution on µ in 9, we derive the Fisher 
Information to find the variance of our semi-Bayesian MLE. From 
9, with a circular uniform prior, the log-likelihood is,

	     ( )
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(10)

and the semi-Bayesian MLE for κ is the solution to setting 

0= where 
δ
δκ
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The solution for MLE κ in this case is found by,
		

			 

					      
. (12)

Immediately we notice a difference when comparing 
MLE

κ̂ in 
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2. Taking another derivative of 11 we have obtained the Hessian 

where 
2

2κ

∂
=
∂





 ,

	

  

					          	

 

(13-15)

	

Then the Fisher Information (I) is given by,

	    				                  
,  (16)	

where substituting the semi-Bayes MLE, the asymptotic 
variance (V ) of

Bay
κ̂ :

          

1

2 Bay 2 2 2 2
Bay Bay

0 Bay

ˆ( )
ˆ ˆ( ) ( ) ( )

ˆ( )

I
V R n nA R A R

I

κ
κ κ

κ

− 
 = − + − 
   

(17)

Therefore the asymptotic variance of the MLE can be found 
using 17. Next, we can compare the two MLE’s via their respective 
large-sample confidence intervals. The (1 ) 100%γ− × confidence 
interval for κ is given by,
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Figure 1 displays histograms for 
MLE

κ̂ and 
Bay

κ̂ based on 1000 
simulations from the CND with 1, 3κ = , using sample size of 

 30n = . In each κ setting the histograms of estimated values are 
nearly identical for 

MLE
κ̂ and

Bay
κ̂ . 

Preliminary Test Estimators
A preliminary test estimator (PTE) is a method of estimation 

that introduces sample-based prior information via a hypothesis 
test on the nuisance parameter to aid in estimating the parameter 
of interest [1]. If we fail to reject the null, then we use an estimator 
evaluated using the null hypothesis value. If we reject the null 
hypothesis, we use an estimator based directly on the sample, the 
usual MLE. The parameter value in the null hypothesis represents 
our prior knowledge. The idea is when the true parameter value is 
in or near the null hypothesis value, the PTE will provide a better 
estimator in terms of mean squared error (MSE), or any other risk 
function.

We observe data from a CND with unknown mean direction 
and concentration parameter. We are interested in estimating 
the concentration parameter, with the mean direction being a 
nuisance parameter. Our preliminary test has null hypothesis of 
mean direction equal to a pre-specified direction, versus a two-
sided alternative.

Our PTE for the concentration performs better than the usual 
MLE and Bayesian estimates for the parameter. The result is 
similar to the linear case where we have a normal distribution 
with unknown mean and variance, [10]. This methodology can 
be used to improve the estimation accuracy in many existing 
applications since the CND is one of the most commonly used 
distributions in circular statistics.

Test for assumed mean direction

 Suppose we have observations 
1
, ...,

n
α α from a CND with both 

mean direction and concentration parameter unknown. We want 
to test:

		  0 10 0
: :H vs Hµ µ µ µ= ≠

  
(18)

In the linear case with data from a Normal distribution, this 
is parallel to the standard Student’s t-test. In [9], the Likelihood 
Ratio Test (LRT) is based on the test statistic:

						               
(19)

where we reject the null hypothesis for small values of the 

test statistic. Note the distribution for 
0

V and 0
V
R

 depend on the 

nuisance parameterκ . However, the exact conditional test for the 

Figure 1: Histograms of 
MLE

κ̂ (MLE) and 
Bay

κ̂ (Bayes) with circular 
uniform prior for 1000 simulations from CND(µ,κ).
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mean direction of the CN can be obtained by using the conditional 
distribution of

0
|R V , which is independent ofκ . 

0
V is the length 

of the projection of sample resultant vector, R , towards the null 

hypothesized mean direction, ( )0 00
cos( ),sin( )µ µ µ= . In the 

conditional test we reject null if 
0

V is too small for a given R , or 

equivalently, we reject the null if R is too large for a given
0

V .

To illustrate the geometry of the test, suppose we have polar 

vector given by the null hypothesis, ( )0 0
cos( ),sin( )µ µ . Next, we 

have n observations and we calculate the length of projection, c
, of the sample resultant vector on the polar vector. Conditioning 
on the value of c , we find the probability of observing our sample 
resultant vector, R , and larger values when the null direction is 
true, conditional on the observed value of 

0
V V= .

The space consists of sample resultant vectors that have 

projection length, c, on the polar vector. Suppose
1

R  and 2R are 

two resultant vector with equal projection length and 
21R R>  

. Then the direction of 
1

R is further away from
o

µ , than 2R ’s 
direction.

For significance level γ , we find the rejection region via the 
exact conditional distribution of

0
|R V . That is, 

0
r is the solution 

to the equation that satisfies:

		   0 0( | )P R r V v γ> = =   (20)

As shown in [9], this critical point 
0

r is the solution to:
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where we solve for 
0

r , for a given v  and n . Equations for 

( )
n

rΨ and ( )
0

f v can be found in [9]. There is no analytical 

solution for 
0

r in this case, and [11] provides a table of rejection 
regions for various values of

0
v . To simplify our hypothesis test 

we use results in [12], where approximate confidence intervals 
for the mean direction are provided. Our test statistic derived 
from the approximate LRT is broken into two cases:

For 0.9R ≤ , we reject 
0

H if:

		          2 2 2

2 0 0

1
(2 )

4
R V n V Z

n γ
> + −

  
(22)

Where 
R

R
n

=  and Z
γ

is the upper quantile of the standard 
Normal distribution.

For 0.9R ≥ , we reject 
0

H if:

		
2 2

20
1,2 2

log n Vn X
n R γ

 − >
 −    

(23)

These approximations hold well for even small sample sizes 
when the concentration is high.

The PTE for the concentration parameter

Now we introduce our PTE for estimating the concentration 
parameter, where the mean direction is a nuisance parameter. 
Given observations,

1
, ...,

n
α α , with unknown mean direction and 

concentration parameter we test our null hypothesized mean 
direction via the aforementioned hypothesis test. Our PTE is given 
by:

(i) For 0.9R ≤ ,

	
				      

(24)

where Z  is found by using 22 and solving for Z
γ

.

(ii) For 0.9R ≥ ,

	
					          (25)

where χ2 is found by using 23.

we break the estimator into the two cases according to our 
hypothesis test. The PTE in either case selects only one of the 
two estimators according to the result of the hypothesis test. The 
performance of the PTE depends on the level of the test and the 
proximity of the true mean direction to the null hypothesized 
value. We measure performance in terms of mean squared 
error (MSE) of our estimator over different significance levels 
γ, and different true differences between the mean directions 

0
µ µδ = − .

In Figure 2, we observe the simulation-based MSE of the PTE 
and MLE for the concentration parameter. We perform 1000 
simulations of ( ) ( )1 20,...,  , ,jCNα α δ κ∼ for  1, ..., 50j = . Here 

1 50
, ...,δ δ represent the 50 equally spaced points between 0 and 

π. For each
j

δ , we record the MSE. Each line represents MSE of 
an estimator over values of 

0
µ µδ = − , where δ  represents the 

true difference between the population mean direction and the 
null hypothesized mean direction.

For significance levels .10, .15, .25,γ = the PTE performs at 
least as good as the MLE, and performs better when the true 
mean direction is closer to the null hypothesized value. For larger 
significance levels the test requires less evidence to reject the null 

Figure 2: Simulation-based MSE of MLE and PTE for different 
significance levels γ .
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hypothesis, and when we reject the null the PTE is equivalent to the 
MLE, 

MLE
κ̂ . In Figure 2, we observe that as the significance level 

increases the PTE is more likely to use 
MLE

κ̂ for smaller values of
δ . To show the vast improvement in our PTE, we examine the 
mean-square relative efficiency (MRE) of the 2 estimators

PTE and MLE, defined by

		
 				      (26)

Values larger than unity imply that the PTE performs better 
than the MLE. In Figure 3, we have the MRE of the MLE and PTE 
with  0.01γ =  across all values ofδ . The relative efficiency is 
greater than 1 for all δ  less than approximately 0.65 radians. 
In this example, the PTE can reduce the MSE by 20% when the 
true difference in mean directions is small. For.	              , the 
MRE is less than 1 implying the MLE has the smaller MLE. This is 
due to our preliminary test failing to reject the null hypothesis. 
For 1.5δ > , the preliminary test will almost always reject the 
null hypothesis value and the PTE will be the same as the MLE 
resulting in the MRE being equal to one.

In Equation 3, the MRE is maximum for  0δ = , and when the 
PTE will almost always reject the null for large enough δ  the MRE 
is equal to one. For 0  δ π< < the PTE may reject or fail to reject 
the null hypothesis depending on the sample observed. In the case 

it fails to reject, 
			 

 is no longer minimized at 
0

µ

µ0 since µ is the population mean (Recall 
0

µ µδ = − ). Therefore 

0
 V R<  if 

0
µ  is closer to µ  than 

        
, and 

0
 V R>  if               is 

closer to µ  than 
0

µ . If the latter case appears more often than 

the former case for some intermediate values ofδ , then the MRE 
will be less than 1.

In Figure 2, we compare the MLE and PTE with  0.01γ =  
from Figure 2 .The PTE with  0.01γ = has the best results for 
smaller values of δ , but could perform worse than the MLE for 
intermediate values of δ . PTEs with  0.1, 0.15, 0.25γ = perform 
at least as good as the MLE. Now, we illustrate other possibilities 
that can occur and the performance of the PTE.

In Figure 4, we simulate from four different realities and 
examine the performance of our PTE for the same significance 

levels as used in Figure 2. Note that the lines have same labels as 
in Figure 2. For each plot we have simulated-based MSEs for each 
line. We perform 1000 simulations of  		   	 , 
for  1, ..., 50.j = Here 

1 50
, ...,δ δ represent the 50 equally spaced 

points between 0 and π. For each δj, we record the MSE which 
creates our MSE curve over δ  for each scenario.

First examine that in all scenarios, the PTE with significance 
level γ = 0.01 performs the best when the true difference in 
mean direction is null or small. In the top-left plot we have n = 50 
simulated observations from CN(δ,κ = 0.5); top-right plot we have 
n = 10 simulated observations from CN(δ,κ = 0.5); bottom-left plot 
we have n = 40 simulated observations from CN(δ,κ = 3); bottom-
right plot we have n = 10 simulated observations from CN(δ,κ = 
2.5).

In the top-right plot all of the PTE’s in this simulation performed 
uniformly better (over δ ) than              . In the remaining three plots 
there are values of   δ   where the             has better performance. 
This occurs when our preliminary test fails to reject the null 
hypothesis for intermediate values of δ . The difference becomes 
more obvious when we have a large sample size and the value of 
κ is small as in the top left plot. Here the PTE’s MSE increases for 
intermediate values of δ , for relatively smaller significance levels. 
There is a similar pattern in the bottom two plots. This pattern is 
to be expected, since smaller significance level will require more 
evidence to reject the null hypothesis of the preliminary test.

In applications, the values of δ  and κ are unknown. So how do 
we select the optimal significance level given n observations from

( ),CN µ κ ? Following the work of [1], we create tables to find a 
PTE with minimum and maximum MREs.

Tables were constructed through simulations. Given a 
sample size n and value for κ, we generate values from a CN(δ,κ) 
distribution to estimate the MRE over a grid of γ and δ  values, 
where 0 ≤ δ ≤ π. For each γ, we compute the maximum MRE,

Emax, minimum MRE, 
min

E , over all δ , and record the δ  

Figure 3: Mean-Squared Error Relative Efficiency of MLE and PTE with 
γ = 0.01.
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Figure 4: Simulation-based Comparison of PTE Performances 
for Sample Sizes   10, 40, 50n = and Concentration Parameters 
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where 
min

E is located, ∆min. For almost all cases the location of 
the maximum MRE is located at  0δ =  and the function MRE(δ) 
is monotone decreasing from  0δ =  to  

min
Eδ = . For values 

 
min

Eδ > , the function MRE(δ ) increases back to unity since the 
PTE will reject the null hypothesized values for larger δ . We then 
repeated this procedure for different parameter values for κ.

The mean resultant vector is the normalized length of R since 	
	    and is a measure of concentration for a sample of 
observations. A value close to 1 implies high concentration and a 
value close to 0 implies little to no concentration around any single 
direction. This estimate does not depend on the knowledge of κ or 
of the mean µ  of the distribution. For the CND, there is a one-to-
one correspondence between statistic ¯R and the concentration 
parameter κ. Given a sample size n and κ, we observe the average              	

       over  our  simulations  and use  the average as an indication of 
strength of concentration. In practice, we advise the user to find 
the sample observed     of the n observations, and then use the 
column of the table with the nearest       value.

In Table 1, we provide a list of potential PTEs for n = 20. The 
rows list various significance levels γ for the PTE ranging from 
1% to 50%. The columns list the different observed values for       . 
Suppose we have a sample size of 20 observations and observe           	
close to 0.779. Following the procedure in [1], we then decide the 
minimum MRE preferred is  0.471

min
E = . Then using the Table 

1, the optimal PTE corresponds to using  0.20.α = Upon request, 
we provide tables for various sample sizes, where the tables 
require only knowledge of sample size, R¯, and the predetermined

min
E .

Table 1: n = 20: Mailmen and Minimum Guaranteed Efficiencies for the PTE.

     R

γ 0.196 0.198 0.202 0.471 0.617 0.710 0.779 0.818 0.871 0.900

0.01        1.016 1.027 1.676 1.38 1.244 1.075 1.081 1.116 1.033 1.018

1.008 1.015 0.995 0.688 0.695 0.869 0.928 0.951 0.936 0.915

0 2.949 2.757 1.154 0.833 0.769 0.769 0.833 0.705 0.449

0.02 1.055 1.103 1.555 1.231 1.105 1.049 1.07 1.118 1.048 1.012

1.043 1.046 0.993 0.689 0.807 0.921 0.961 0.98 0.968 0.95

0 3.142 2.629 1.09 0.769 0.769 0.769 0.833 0.769 0.449

0.05 1.127 1.228 1.313 1.08 1.02 1.031 1.06 1.111 1.061 1.015

1.116 1.102 0.991 0.743 0.924 0.968 0.988 0.995 0.988 0.983

0 3.142 2.5 0.962 0.769 0.769 0.833 0.898 0.833 0.513

 0.1
1.138

1.134

1.246

1.103

1.202

0.984

1.012

0.825

1.004

0.964

1.017

0.988

1 042

0.994

108

0.997

1.051

0.995

1.006

0.994

0 3.142 1.795 0.833 0.705 0.769 0.833       0.898 0.833 0.641

0.15 1.103 1.195 1.139 1.007 1.002 1.02 1.031        1.066 1.044 1.007

1.099 1.076 0.975 0.889 0.979 0.994 0.997 0.997 0.997 0.997

3.142 3.142 1.667 0.769 0.705 0.833 0.833 0.898 0.898 0.769

0.2 1.084 1.144 1.085 1.005 1.001 1.015 1.026 1.054 1.031 1.007

1.076 1.06 0.968 0.935 0.987 0.996 0.998 0.998 0.998 0.998

1.988 3.077 1.603 0.641 0.641 0.833 0.898 0.898 0.898 0.709

0.25 1.064 1.111 1.045 1.005 1 1.017 1.018 1.046 1.023 1.006

1.059 1.040 0.965 0.96 0.991 0.997 0.998 0.998 0.999 0.999

0 3.077 1.346 0.385 0.449 0 833 0.833 0.898 0.898 0.833
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0.3 1.049 1.08 1.015 1.006 1 1.013 1.016 1.029 1.02 1.007

1.046 1.032 0.963 0.971 0.995 0.998 0.999 0.999 0.999 0.999

0 3.142 1.346 0.128 0.577 0.833 0.833 0.898 0.898 0.833

0.35 1.036 1.059 1.002 1.004 1 1.01 1.012 1.02 1.015 1.006

1.033 1.024 0.965 0.979 0.996 0.999 0.999 0.999 0.999 1

1.859 3.142 1.282 0 0.449 0.833 0.898 0.962 0.898 0.833

0.4 1.026 1.044 0.992 1.002 1 1.008 1.008 1.013 1.012 1.007

1.024 1.016 0.965 0.982 0.996 0.999 1 1 0.999 1

0 3.142 1.154 0 0 0.898 0.898 0.962 0.898 0.898

0.45 1.019 1.031 0.99 1.001 1 1.007 1.008 1.009 1.01 1.005

1.017 1.011 0.969 0.987 0.998 1 1 1 0.999 1

0 3.142 1.154 0 0 0.898 0.962 0.898 0.898 0.898

0.5 1.015 1.023 0.993 1.001 1 1.005 1.003 1.005 1.006 1.003

1.013 1.009 0.971 0.99 0.999 1 1 1 1 1

0 3.142 0.962 0 0 449 0.898 0.898 0.898 0.898 1.218

Figure 5: MSE of PTE and Bayes Estimators over δ: ( )—
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k
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and
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ˆ   κ − − − .
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Comparison of the PTE and Bayes Estimators

Both the PTE and Bayes estimators in 12, use prior 
information on the mean direction µ  to aid in estimation of 
the concentration parameter. A smaller significance level for the 
PTE requires stronger evidence to reject the null hypothesized 

value
0

µ . A smaller significance level may be chosen to coincide 
with a stronger belief in the mean direction

0
µ . In the previously 

mentioned Bayesian setting of this chapter, a larger value for the 
concentration parameter τ focuses our prior distribution around 
the mean direction

0
µ . A larger value in parameter τ represents a 

stronger belief in prior mean direction
0

µ .

In Figure 5 we make a comparison of the MSE of our PTE with 
significance level of 1% with the Bayes estimator with CN prior 
centered around the null hypothesis value

0
µ  and with  4τ = . We 

plot the MSE curve of each estimator over values of δ .

In each plot, the solid line is MSE curve for the PTE and the 
dashed line is the MSE curve for the Bayes estimator. For κ = 1, 
ˆ

PTE
κ  performs better overall for all sample sizes. For  10n =

, ˆ
PTE

κ  performs uniformly better than
Bay

κ̂ . For  20n = and 

 30n =  the estimators have similar performances for small 
values of δ , but the MSE for 

Bay
κ̂ is much larger for large values 

of δ .

If κ = 3, we have different results when comparing the MSEs. 

In all sample sizes of  10, 20, 30,n = the MSE of ˆ
PTE

κ is best for 

small values of δ . Also, for all sample sizes, 
Bay

κ̂ has the smaller 

MSE for the larger values of δ . In this case for large value of κ, 

Bay
κ̂ would be the preferred estimator since the performance is 
better overall.

In reality we do not know the value of κ, so need a data driven 

way to select 
Bay

κ̂ versus ˆ
PTE

κ . If we suspect a high concentration 

maxE
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maxE
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minE
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then we suggest to use 
Bay

κ̂ , and for a weak concentration then 

use 
         

. If given a sample size n, go to the corresponding PTE 
table for the same sample size. In the table, go to the 7th column 
which gives the expected          under  3κ = simulations. From your 
observed sample of size n, calculate R¯ in column 7, and compare 
to the value from the PTE table. If less than the PTE table value, 
then use

           
, otherwise use

Bay
κ̂ .

Conclusion
In our work we have shown a superior estimator for the 

concentration parameter when the mean direction is unknown of 
a CND. In all cases the PTE has better performance in terms of MSE 
if δ is null or small. Another interesting result is in comparison for 
the PTE we developed an MLE for the concentration parameter 
based from the prior distribution of mean direction.
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